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Abstract
It is argued that a particularly simple kind of many-body interaction can be
developed by making the one-body or self-energy terms in the potential depend
on a local environmental factor, such as the local density, in some way. Two
examples of this are considered: a toy model for macroion suspensions, and an
extension to the dissipative particle dynamics simulation method.

1. Introduction

Much work has been done on pair potentials which have an additional dependence on the local
environment (e.g. on density) and can therefore be said to be many body in nature. An example
is the use of screened Coulomb interactions for macroion suspensions, where the screening
length depends on the ionic strength [1]. But possibly the simplest of all many-body interactions
can be set up with the one-body or self-energy terms, normally treated as ignorable constants.
Here I demonstrate this by considering two examples: a toy model density-functional theory
(DFT) for macroion colloidal suspensions [2], and an extension to the dissipative particle
dynamics (DPD) simulation method to allow for vapour–liquid equilibrium in a soft sphere
fluid [3–5].

It is first useful to make some general comments. Consider a one-component system of N
particles in a volume V with an arbitrary potential energy U{ri}, where ri labels the particle
positions, and i = 1, . . . , N labels the particles. Such a system may be isolated, or may be
embedded in a solvent in which case U is the McMillan–Mayer potential energy depending
on chemical potentials of solvent species [6, 7]. One can always expand this as

U{ri } = NU1 +
∑
i< j

U2(ri j) + · · · (1)

where U1 is the one-body term or self-energy per particle, U2 is the pair potential (which I
assume only depends on the magnitude of the separation, ri j = |r j − ri |), and so on, by the
following procedure. First consider an isolated particle. Since U{ri } is completely generic,
U1 = U{ri } for N = 1. Next consider an isolated pair of particles for which U2 = U{ri}−2U1.
Then consider isolated triplets, etc. By the very nature of this construction, U1, U2, etc do
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not contain any density dependence. The one-body term is therefore a constant which can
be thrown away (in McMillan–Mayer theory it may depend on the chemical potentials of the
solvent species but these remain constant across coexisting phases).

Now introduce a density dependence in the terms in this expansion:

U{ri } = NU1(ρ) +
∑
i< j

U2(ri j; ρ) + · · · (2)

where ρ = N/V . Density-dependent pair potentials have been considered by a number of
authors, but here I wish to focus on the density-dependent one-body term. This is no longer
constant and cannot be thrown away since it has an arbitrary effect on the properties (since
NU1 = VρU1 is proportional to the system volume, this term can also be called a volume
term). One should recognize though that the ad hoc introduction of a density dependence in
the terms in equation (1) is an arbitrary procedure not based on a formal expansion of U{ri}.
One consequence of this is that great care must be taken to specify the nature of the density
dependence in equation (2), as has been emphasized by Louis [8]. Here I assume that the
dependence is on a local density, defined to be a measure of the number concentration of
particles in the vicinity of the point of interest. Thus

ρ → ρlocal(ri ) =
∑

j

w(ri j ) (3)

where w(r) is a weighting function usually normalized to
∫

d3rw(r) = 1. In this situation,
the local densities that appear in the terms in equation (2) are determined once the positions
of all the particles are known and as a consequence U{ri } itself does not contain a density
dependence. With this approach, there is no difficulty of interpretation of thermodynamic
relations.

The density-dependent one-body term has non-trivial effects on the system properties and
it is therefore of interest in considering models in which only this term is present. Specifically
one can work with a local-density-dependent self-energy u(ρ) such that the total potential
energy is

U{ri } =
∑

i

ui , ui = u(ρi ), ρi =
∑

j

w(ri j ). (4)

This construction is perhaps sufficiently novel that it might deserve a special name; for instance
ui = u(ρi) could be termed a ‘mono-potential’.

The discussion above is specific to a one-component fluid, but the concepts generalize
in an obvious way to multi-component fluids. I now give two examples where non-trivial
behaviour follows purely from density-dependent self-energies.

2. Toy model for macroion suspensions

I consider a suspension of macroions of charge Z and diameter σ = 2a, in a supporting 1:1
electrolyte solution. This system, and its relevance to charge-stabilized colloidal suspensions,
has attracted much interest recently [9–12]. Here I consider a very simple theory for
the thermodynamics of the system, including only the self-energy of the macroions in the
electrolyte solution. It is sufficiently simple that an obvious DFT can be constructed, but it still
possesses interesting properties. A partial analysis of this model was presented a couple of
years ago [2], and a more complete analysis is in preparation. The free energy per unit volume
is

F/V = ρMkBT (logρM − 1) + ρskBT (logρs − 1)

+ (ZρM + ρs)kBT (log(ZρM + ρs)− 1) + ρMuM. (5)
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Figure 1. The phase behaviour of toy model free energy equations (5) and (6) for macroion
suspensions at Z = 103 and σ = 100 nm, as a function of the macroion volume fraction φ
and added salt concentration ρs. The dashed curves represent the boundaries where the macroion
structure factor diverges at zero wavevector (interior spinodal curve) or at non-zero wavevector
(outer dashed curve) [2]. Marked points are critical points, and tie lines are curved in this double-
logarithmic plot.

The only non-ideal contribution arises from the macroion self-energy

uM = Z 2lBkBT

2a(1 + κa)
. (6)

In equations (5) and (6), lB is the Bjerrum length, kB is Boltzmann’s constant, T is temperature,
and κ is the inverse Debye screening length due to the electrolyte solution. This is found from
κ2 = 8πlBρI where ρI = (ρ+ + ρ−)/2 = ρs + ZρM/2 is the ionic strength, ρ± are the
microion densities, ρs is the added salt concentration, and ρM is the macroion concentration.
Interestingly, the self-energy coincides with that of a spherical capacitor, charged to ±Z , with
one plate at the macroion surface and the second a distance κ−1 away.

This model has a phase transition at low ionic strength which is similar to those of more
sophisticated models [13, 14], and a typical phase diagram is shown in figure 1. The physics
is that the self-energy causes the macroions to drift towards regions of higher ionic strength,
which by charge neutrality are regions where the macroion concentration is already high; hence
there is a natural tendency for clustering.

A severe criticism of the model is the linearization approximation used to calculate the
self-energy in such a simple form. This means that the model can really only be called a ‘toy
model’ and its relevance to charge-stabilized colloids is called into question. The linearization
approximation can be improved, in which case the phase transition may or may not disappear
completely [15–17].

The interest here, however, is that a simple DFT can be proposed which greatly advances
the understanding of the phenomenology. I write

F = kBT
∫

d3r
∑

i=+,−,M
ρi (r) log[ρi (r)− 1]

+ lBkBT
∫

d3r d3r′ ρQ(r)ρQ(r
′)

|r − r′| +
∫

d3r ρM(r)uM(r) (7)

where the first term is the ideal solution entropy, the second term is a mean-field electrostatic
term, and the last term is the macroion self-energy contribution constructed using a local
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Figure 2. Density profiles for all species (top), the electric field and electrostatic potential (middle),
and the excess grand potential together with electrostatic contribution (bottom), for a representative
tie line near the upper critical point in figure 1.

ionic strength. In these, ρQ(r) = ZρM(r) + ρ+(r) − ρ−(r) is the space charge density,
uM(r) = Z 2lBkBT/2a(1 + κ(r)a), a local Debye screening length is defined in terms of a
smoothed local ionic strength, [κ(r)]2 = 8πlBρ̄I(r) with ρ̄I(r) = ∫

d3rw(|r − r′|)ρI(r
′),

w(r) is a normalized weight function, and ρI(r) = [ρ+(r) + ρ−(r)]/2. It is easily shown that
for a homogeneous system, this DFT reduces to the free energy in equations (5) and (6). Some
kind of smoothing is essential to make the model well behaved; in this case I have arbitrarily
chosen a simple weighting function w(r) ∝ exp[−αr2/σ 2) with results for α = 1 presented
here.

One can calculate the structure factors predicted by this model rather easily by functional
differentiation; this was done earlier [2]. For the simple choice of weighting function,the model
makes the intriguing prediction that a peak at non-zero wavevector appears in the macroion
structure factor at some state points. As indicated in figure 1, this peak diverges in the vicinity
of the lower critical point signalling the appearance of microphase separation. (A knowledge
of the actual macroion structure factor could be used to improve the choice of w(r), as in
conventional DFT.)

A second use of the DFT is to calculate interfacial profiles and surface tensions between
coexisting phases. Since microphases interfere with the lower critical point in the present
model, this can only be done in the vicinity of the upper critical point. More details will
be presented elsewhere, but a representative example of the ion density profiles is shown in
figure 2, together with electric fields and potentials, and the grand potential density. Note the
appearance of a potential jump�ψ across the interface: this is the Donnan potential (sometimes
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Figure 3. The scaling of the interfacial tension γ (left) and a measure of the interfacial width w
and correlation lengths ξ± (right), as a function of the scaled distance m from the upper critical
point in terms of the added salt chemical potential µs.

known as the Galvani potential). The excess grand potential gives the surface tension which
is typically of the order of kBT/σ 2. The surface tension vanishes as one approaches the upper
critical point, with a mean-field exponent, as shown in figure 3. The interfacial width, and
correlation lengths determined from the decay of the profiles on either side of the interface,
are also shown. They diverge with a mean-field exponent as one approaches the upper critical
point.

For the present paper, note again that the only correlation term in the free energy is the
self-energy of the macroions. Thus this model falls into the class discussed in the introduction.
However, the features seen in this model such as phase separation, microphases, and a rich
interfacial structure, are a consequence of the short range nature of the weighting function
used to construct the local ionic strength competing with the long range Coulomb law. Thus
we see that the nature and range of the weighting function are also important for determining
the behaviour of the model. This will become even more apparent in the next example.

3. Many-body dissipative particle dynamics

A second example I shall discuss is a generalization of the DPD simulation method. The DPD
method basically addresses a fluid of soft spheres with some kind of thermostat, and has found
various applications in simulating complex fluids [18]. In the standard DPD, the soft spheres
interact via soft pair potentials, but in the many-body generalization [3, 4], it is apparent that
the potential energy is precisely of the form discussed in the introduction. Again more details
are presented elsewhere [5]. The approach can be compared with similar work on smoothed
particle applied mechanics [19] and smoothed DPD [20].

The ‘mono-potential’, if we wish to call it such, is

ui = Aρ̄i + Bρ̃2
i (8)

where there are two measures of the local density,

ρ̄i =
∑

j

w(ri j ; rc), ρ̃i =
∑

j

w(ri j ; rd), (9)

constructed from a simple normalized weight function

w(r; R) = 15

2πR3
(1 − r/R)2 (r < R) (10)

with different ranges rc and rd. It is usual to take rc = 1 to fix units of length and density,
etc. If rd < 1, A < 0 and B > 0, then the model exhibits phase coexistence between a liquid
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Figure 4. The phase diagram for many-body DPD (left two plots), and interfacial density profiles
(right two plots) at kBT = 1 (solid curve), kBT = 2 (chain curve), and kBT = 0.5 (dashed curve).
Data for two different parameter sets are shown: rc = 1, rd = 3/4, A = −4π/3, and B = 27π/64
(set I) or B = 135π/512 (set II) [5].

Figure 5. The surface tension γ (left) and a measure of the interface width w (right) for the two
many-body DPD parameter sets of figure 4.

at a density ρ ∼ 5 and a vapour phase of vanishingly small density. On the other hand, if
rd > 1, one may see microphase separation, although care has to be taken to make sure that
the potential U{ri} is not ‘catastrophic’ the sense of Ruelle [8, 21].

The potential energy U{ri } = ∑
i ui can be used directly in Monte Carlo simulations, or

within the DPD framework via the forces fi = −∂U/∂ri , in which case the model reduces
to models previously considered by earlier workers [3, 4]. Note that the correlations imply
〈ρ̄i 〉 �= 〈ρ̃i 〉 �= ρ [4].

Figure 4 shows the phase behaviour and interfacial density profiles for two parameter
sets (see [5] for more details), and figure 5 shows the interfacial tensions and a measure of
the interfacial width, also determined by these simulations. It is apparent that the many-body
or ‘mono-potential’ construct has allowed us to build a liquid out of purely soft interactions,
although in this particular case one can expand out the sums in equations (4), (8) and (10) to
see that one has (density-independent) soft pair attractions plus soft three-body repulsions.

4. Discussion

The general proposal is to write the potential energy for a set of particles i = 1, . . . , N
as U{ri } = ∑

i ui where ui is a self-energy or ‘mono-potential’ which depends on the
local environment in some way. In the first example, this dependence was on a local ionic
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strength, and was used to construct a DFT. The approach is similar to a weighted local-density
approximation (WLDA). In the second example, the dependence was on the local density, for
a one-component fluid. The potential energy U{ri } was used as to determine the forces on
particles within the DPD framework.

We see that the whole formalism has quite a rich physics, and indeed one can cast density-
independent pair potentials into this form by writing ui = (1/2)

∑
j U2(ri j) (this is not in

the form ui = u(ρi ) but certainly falls into the general group of an environment-dependent
self-energy). Thus the formalism contains the whole of classical pair potential theory for
liquids. Moreover, features from the classical theory of liquids persist in the new approach; in
particular the range of interaction is replaced by the sampling range for the local environment,
and has important consequences for the behaviour. Multiple ranges can be introduced (and
may need to be introduced). If there is a phase instability, it can be to bulk phase separation or
microphase separation. Finally, care is needed to avoid ‘catastrophic’ potentials in the sense of
Ruelle [8, 21]. An interesting open problem is the development of integral equation methods
for these many-body fluids.

As a final remark, the focus on pair potentials perhaps derives from the traditions of liquid
state theory originating with van der Waals and others. Density-dependent pair potentials
and other many-body effects have been found to be necessary in soft condensed matter to
describe complex fluids. One is tempted to speculate that density-dependent self-energies offer
a simpler way to handle some of these complexities in a unified manner, without compromising
the essential physics.
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[20] Expañol P and Revenga M 2003 Phys. Rev. E 67 026705
[21] Ruelle D 1999 Statistical Mechanics: Rigorous Results (Singapore: World Scientific)


